Determining tropical width and TTL boundaries using trace gas, cloud, and aerosol observations

Melody Avery^{2,3}, Sean Davis¹, Karen Rosenlof¹
¹NOAA CSL, Boulder, CO

²NASA Langley Research Center, Hampton, VA ³University of Colorado, CIRES, Boulder, CO

SAGE Science Team Meeting, October 14, 2022

Report on My Recent Research In Colorado: Meditations from my local craft brewery.

Science Questions:

How large is the head on a beer?

What processes impact the volume of this foam?

What residue does the foam leave behind?

How will the head on this beer change over time?

→ Will this help us to get new insight into the tropical tropopause layer?

Objective: Create a new metric for defining the boundaries of the Tropical Tropopause Layer (TTL) using high verticalresolution SAGE-III/ISS and CALIOP Observations

Roadmap to Our Talk:

- Introduction to Tropical Width and "ISSI TWIST"
- Testing out new observational metrics
- What about SAGE-III/ISS clouds and aerosols?
- Cloud/Aerosol Discrimination, what can we learn from SAGE-III/ISS?
- "I've looked at clouds from both sides now...": CALIOP and SAGE-III
- How do ozone and water vapor distributions compare? CALIOP and MLS
- Getting off the "Zonal Mean Highway"

GOAL: Use the golden age of satellites observations to evaluate longer climate data records.

Background: Tropical Width

Northern Hemisphere - Latitude

"Width of Tropics" Metrics

- Column Ozone
- Outgoing Long-Wave Radiation
- Tropopause Break
- Subtropical Jet
- 500 hPa streamline =0
- Eddy-Driven Jet
- Surface zonal wind
- Precipitation-Evaporation
- Sea-Level Pressure

Testing out new observational metrics

Motivation:

- Most estimates of historical tropical width changes are based on reanalyses (models)
- We're considering new metrics based on independent (non-assimilated) measurements

Methods:

- Generally, variables have a meridional gradient that we are exploiting to identify a tropical "edge" latitude
- Compute new metrics and compare correlations to other metrics (seasonal, interannual)
- Look at trends
- Compare to models
- Consider zonal asymmetries
- Consider a TTL volume

What is the ISSI TWIST project? ISSI TWIST Goals:

- → 1. Identifying robust satellite-observed metrics of tropical width in the UTLS
 - 2. Characterizing relationships between UTLS tropical width and circulation
 - 3. Identifying how tropical width variations in the UTLS relate to variability and trends in trace gas concentrations

Instead of using the reanalysis data or total column ozone, we're using observations to investigate tracer and other gradients at specific levels.

This IS a SAGE Science Team Meeting. What About SAGE-III/ISS Observations?

SAGE-III/ISS Version 5.1 vs Version 5.2 – 1022 nm Extinction Coefficient Ratio and 520 nm/1022 nm Color Ratio

SAGE-III/ISS 1022 nm Seasonal Zonal Mean Extinction Coefficients All-Sky, All Particles (Ice + other Aerosols), 2017 – Jan. 2022

Data Analysis for SAGE Extinction Profiles:

Seasonality uses Boreal labeling, Typical DJF, etc.

June 2017 – January 2022

Extinction
Uncertainty < 100%

Thomason and Vernier, 2013: SAGE Cloud/Aerosol Discrimination

Summertime Zonal Means as segments of the TV CAD

Scales on top and bottom row of plots are not the same!

Observation:
CR appears to more
effectively separate
the tropospheric from
the stratospheric
features

Seasonal Cloudy Bin Occurrence, SAGE-III (Latitude-Normalized)

CALIOP Transparent Cirrus Cloud Fraction, CALIOP

SAGE Water Vapor – Native SAGE Data Resolution

SAGE (LHS) vs MLS (RHS) Seasonal Median Water Vapor

MLS/SWOOSH pressure levels have been converted to geopotential height using a scale height of 7 km for both data sets.

SAGE (LHS) and MLS (RHS) Seasonal Median Ozone

MLS/SWOOSH pressure levels have been converted to geopotential height using a scale height of 7 km for both data sets.

Summer (JJA) Summary, SAGE and CALIOP

Asymmetries in the Tropopause

Merra-2 Tropopause, 2013

Seasonal Changes: JF (LHS) vs JA (RHS)

CALIOP Cloud Fraction at 16 km Next step is to look at tropical width in meridional segments.

CALIOP vs SAGE-III Cloud Top Observations, JJA, Asian Monsoon Region

CALIOP Cloud Top Heights

Day+NightCALIOP Cloud Top Height vs Latitude

SAGE-III Cloud Top Heights – SAGE V5.2

Summary

- SAGE cloudy bin occurrence and CALIOP cirrus cloud fraction from the TV-CAD agree well using adjusted SAGE-III/ISS V5.2.
- Intermittent deep convection, as well as wave transport brings clouds and water vapor to and above the regional MERRA-2 tropopause and cold point.
- Aircraft, balloon, CALIPSO and SAGE-III/ISS observations all show that ice particles can be transported and/or formed up to 18.5 km, 400 K (or ~70 hPa).
- Asymmetries are not limited to Hemispheric; particulate distributions suggest that zonal means aren't representative.
- During the Asian Monsoon, water vapor and ozone distributions present an intriguing conundrum. Both the stratospheric circulation and convection appear to have an influence.
- Understanding the tropical tropopause region and how the troposphere and stratosphere interact across spatial and temporal scales is likely important for understanding the impact of global warming.